Chapter 2

Change of Variables

Let φ be a continuously differentiable function that maps $[\alpha, \beta]$ into [a, b]. For every continuous function f on [a, b], we have following change of variables formula :

$$\int_{\alpha}^{\beta} f(\varphi(y))\varphi'(y) \, dy = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) \, dx \; . \tag{2.1}$$

The formula comes from a direct application of the Fundamental Theorem of Calculus. Let F(x) be a primitive function of f, that is, F' = f. Consider the composite function $g(y) = F(\varphi(y))$. By the chain rule,

$$g'(y) = F'(\varphi(y))\varphi'(y) = f(\varphi(y))\varphi'(y)$$
.

By the fundamental theorem of calculus,

$$g(\beta) - g(\alpha) = \int_{\alpha}^{\beta} g'(y) \, dy = \int_{\alpha}^{\beta} f(\varphi(y)) \varphi'(y) \, dy$$
.

On the other hand,

$$g(\beta) - g(\alpha) = F(\varphi(\beta)) - F(\varphi(\alpha)) = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) \, dx$$

Hence the formula holds.

When φ maps $[\alpha, \beta]$ bijectively onto [a, b], either φ is strictly increasing with $\varphi(\alpha) = a$, $\varphi(\beta) = b$ or it is strictly decreasing with $\varphi(\alpha) = b$, $\varphi(\beta) = a$. In the first case φ' is non-negative or in the second case non-positive. So (2.1) becomes the formula

$$\int_{\alpha}^{\beta} f(\varphi(y)) |\varphi'(y)| \, dy = \int_{a}^{b} f(x) \, dx \, . \tag{2.2}$$

In the first two sections we will extend (1.2) to higher dimension. In the last two sections we consider an extension of (1.1).

2.1 The Change of Variables Formula

Let D_1 and D_2 be two regions in \mathbb{R}^n . (Here we are mainly concerned with n = 2, 3.) A bijective map from D_1 to D_2 is called a C^1 -diffeomorphism if it and its inverse are both continuously differentiable.

For a differentiable map Φ from D_1 to \mathbb{R}^n , its Jacobian matrix $\nabla \Phi$ is given by $(\partial \Phi_i / \partial x_j), i, j = 1, 2, \cdots, n$, that is,

$\left\lceil \frac{\partial \Phi_1}{\partial x_1} \right\rceil$	 	$\left. \frac{\partial \Phi_1}{\partial x_n} \right $
$\left \frac{\partial \Phi_2}{\partial x_1} \right $	 	$\frac{\partial \Phi_2}{\partial x_n}$
$\left\lfloor \frac{\partial \Phi_n}{\partial x_1} \right\rfloor$	 	$\frac{\partial \Phi_n}{\partial x_n} \right]$

The determinant of the Jacobian matrix is called the *Jacobian* of Φ . It will be denoted by J_{Φ} .

By the Inverse Function Theorem, a C^1 -map from a region D in \mathbb{R}^n to \mathbb{R}^n which is one-to-one and whose Jacobian never vanishes sets up a C^1 -diffeomorphism between Dand its image $\Phi(D)$. This fact will be used implicitly and frequently below.

Theorem 2.1. (Change of Variables Formula) Let Φ be a C^1 -diffeomorphism from D_1 to D. For any continuous function f in D,

$$\int_{D} f(\boldsymbol{x}) d\boldsymbol{x} = \int_{D_1} f(\Phi(\boldsymbol{y})) |J_{\Phi}(\boldsymbol{y})| d\boldsymbol{y} .$$
(2.3)

Here $d\mathbf{x}$ and $d\mathbf{y}$ refer to the integration over an *n*-dimensional region. For n = 2, in our usual notation, this formula reads as,

$$\iint_{D} f(x,y) \, dA(x,y) = \iint_{D_1} f(\Phi(u,v)) |J_{\Phi}(u,v)| \, dA(u,v) \, ,$$

and for n = 3,

$$\iiint_{\Omega} f(x,y,z) \, dV(x,y,z) = \iiint_{\Omega_1} f(\Phi(u,v,w)) |J_{\Phi}(u,v,w)| \, dV(u,v,w) \; .$$

The integration formulas for the polar coordinates, cylindrical coordinates and spherical coordinates are special cases of this theorem.

In the case of the polar coordinates, we take n = 2 and $\Phi(r, \theta) = (r \cos \theta, r \sin \theta)$. Then $J_{\Phi} = r \ge 0$, so the formula (2.3) becomes

$$\iint_D f(x,y) \, dA(x,y) = \iint_{D_1} f(r\cos\theta, r\sin\theta) r \, dA(r,\theta) \; .$$

In the case of the cylindrical coordinates, we take n = 3 and $\Phi(r, \theta, z) = (r \cos \theta, r \sin \theta, z)$. Then $J_{\Phi} = r$ and (2.3) becomes

$$\iiint_{\Omega} f(x, y, z) \, dV = \iint_{\Omega_1} f(r \cos \theta, r \sin \theta, z) r \, dV(r, \theta, z) \; .$$

when

In the case of the spherical coordinates, we take n = 3 and

$$\Phi(\rho,\varphi,\theta) = (\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) , \quad \varphi \in [0,\pi], \ \theta \in [0,2\pi) .$$

Then $J_{\Phi} = \rho^2 \sin \varphi \ge 0$ and (2.3) becomes

$$\iiint_{\Omega} f(x, y, z) \, dV = \iiint_{\Omega_1} f(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) \rho^2 \sin \varphi \, dV(\rho, \varphi, \theta)$$

We now explain the ideas behind (2.3).

We take n = 2 and D_1 a rectangle. A partition $P = \{R_{ij}\}$ on D_1 introduces a generalized partition $\{D_{ij}\}$ on D. Now, for a continuous function f in D, when the partition P becomes very fine, by Theorem 1.10,

$$\iint_{D} f \, dA \approx \sum_{i,j} f(p_{ij}) |D_{ij}|$$
$$= \sum_{i,j} f(\Phi(q_{ij})) \frac{|D_{ij}|}{|R_{ij}|} |R_{ij}|$$

where p_{ij} is a tag point in D_{ij} and $\Phi(q_{ij}) = p_{ij}$. This is possible because Φ is bijective.

Now, let us focus on a subrectangle R_{ij} . Let (u, v), (u+h, v), (u, v+k), (u+h, v+k) be the vertices of the subrectangle. (We have dropped the subscripts i, j for simplicity. (u, v)should be (u_i, v_j) and $h = \Delta x_i, k = \Delta y_j$.) Its image D_{ij} has vertices at $\Phi(u, v), \Phi(u + h, v), \Phi(u, v+k)$, and $\Phi(u+h, v+k)$. By Taylor's expansion,

$$\Phi(u+h,v) = \Phi(u,v) + \Phi_u(u,v)h +$$
 higher order terms,

$$\Phi(u, v + k) = \Phi(u, v) + \Phi_v(u, v)k + \text{ higher order terms,}$$

and

$$\Phi(u+h, v+k) = \Phi(u, v) + \Phi_u(u, v)h + \Phi_v(u, v)k + \text{ higher order terms}$$

Ignoring the higher order terms, D_{ij} is well approximated by the parallelogram with vertices at $\Phi(u, v)$, $\Phi(u, v) + \Phi_u(u, v)h$, $\Phi(u, v) + \Phi_v(u, v)k$, and $\Phi(u, v) + \Phi_u(u, v)h + \Phi_v(u, v)k$. Recall that for a parallelogram spanned by two vectors (a_1, a_2) and (b_1, b_2) , its area is given by $|a_1b_2 - a_2b_1|$. Therefore, the area of our parallelogram is equal to $|J_{\Phi}(u, v)|hk$. As hk is just the area of R_{ij} , so

$$\frac{|D_{ij}|}{|R_{ij}|} \approx \frac{|J_{\Phi}(u_i, v_j)|hk}{hk} = |J_{\Phi}(u_i, v_j)|.$$

It follows that

$$\sum_{i,j} f(\Phi(q_{ij})) \frac{|D_{ij}|}{|R_{ij}|} |R_{ij}| \approx \sum_{i,j} f(\Phi(q_{ij})) |J_{\Phi}(u_i, v_j)| |R_{ij}| .$$

Note that (u_i, v_j) is also a tag point in R_{ij} . Applying Theorem 1.11, as $||P|| \to 0$,

$$\iint_D f(x,y) \, dA(x,y) = \iint_{D_1} f(\Phi(u,v)) |J_{\Phi}|(u,v) \, dA(u,v) \; .$$

Similarly, in n = 3, the subrectangular box B_{ijk} maps to a parallelepiped Ω_{ijk} under Φ and the volume ratio

$$\frac{|\Omega_{ijk}|}{|B_{ijk}|} \approx |J_{\Phi}(u_i, v_j, w_k)| \; .$$

In the following we look at some examples. We point out that in n = 2, 3, people like to use another notation for the Jacobian matrix, for instance, J_{Φ} is written as

$$\frac{\partial(x,y)}{\partial(u,v)}$$

The variables in the numerator and denominator are respective the dependent and independent variables. In the next section we will establish the useful relation:

$$\frac{\partial(x,y)}{\partial(u,v)} = \frac{1}{\frac{\partial(u,v)}{\partial(x,y)}} \ .$$

Example 2.1. Find the area of the region bounded by the curves y = x, y = 6x, xy = 1 and xy = 5.

We make the region simpler by introducing the change of variables u = y/x and v = xy. The rectangle $(u, v) \in [1, 6] \times [1, 5]$ is mapped to the region under $\Phi : (u, v) \mapsto (x, y)$. The map Φ can be determined by expressing x, y in terms of u, v. After a little manipulation, we get $x = \sqrt{vu^{-1}}, y = \sqrt{uv}$. The Jacobian is equal to 1/(-2u). It follows that the area is given by

$$\iint_{D} 1 \, dx dy = \int_{1}^{6} \int_{1}^{5} \left| \frac{\partial(x, y)}{\partial(u, v)} \right| \, du dv$$
$$= \int_{1}^{6} \int_{1}^{5} \left| \frac{1}{-2u} \right| \, dv du$$
$$= 2 \log 6 \; .$$

We point out one can determine the Jacobian without Φ . Indeed, the Jacobian of the inverse map is

$$\frac{\partial(u,v)}{\partial(x,y)} = -2y/x = -2u.$$

By the relation above, the Jacobian of Φ is 1/(-2u).

Example 2.2. Evaluate the iterated integral

$$\int_0^1 \int_0^{1-x} \sqrt{x+y} (y-2x)^2 \, dy dx \; .$$

This is a double integral over the triangle with vertices at (0,0), (1,0) and (0,1). While the region of integration is simple enough, the integrand is a bit messy. Unlike the first example, we simplify the integrand this time. Letting u = x + y and v = y - 2x, the integrand becomes $\sqrt{u}v^2$ but the region becomes the region bounded by the curves x = 0, y = 0, x + y = 1 which go over to u = v, 2u + v = 0 and u = 1. The Jacobian of the inverse map is

$$\frac{\partial(u,v)}{\partial(x,y)} = 3$$

Therefore,

$$\begin{split} \int_0^1 \int_0^{1-x} \sqrt{x+y} (y-2x)^2 \, dy dx &= \int_0^1 \int_{-2u}^u \sqrt{u} v^2 \frac{1}{3} \, dy dx \\ &= \frac{2}{9} \, . \end{split}$$

Example 2.3 Evaluate

$$\int_1^2 \int_{1/y}^y \sqrt{\frac{y}{x}} e^{\sqrt{xy}} \, dx \, dy \; .$$

The region is composed three sides given by y = x, xy = 1 and y = 2. Let $u = \sqrt{xy}$ and $v = \sqrt{y/x}$ or x = u/v, y = uv. The region goes over to the region bounded by v = 1, u = 1 and uv = 2. We have

$$\frac{\partial(x,y)}{\partial(u,v)} = \frac{2u}{v}$$

Therefore, our integral is equal to

$$\int_{1}^{2} \int_{1}^{2/u} v e^{u} \frac{2u}{v} \, du \, dv = 2e(e-2) \, .$$

Next we look at some three dimensional examples.

Example 2.4 Evaluate

$$\int_0^3 \int_0^4 \int_{x=y/2}^{x=y/2+1} \left(\frac{2x-y}{2} + \frac{z}{3}\right) \, dx \, dy \, dz \, dz$$

The region projected to the rectangle $[0,3] \times [0,4]$ in *yz*-plane and is simple enough. Let $t = x - y/2 \in [0,1], y = y, z = z$ be the change of variables. The Jacobian is equal to 1. Therefore, this integral is equal to

$$\int_0^3 \int_0^4 \int_0^1 \left(t + \frac{z}{3}\right) dt dy dz = 12 \; .$$

Example 2.5. Find the volume of the ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 \le 1$.

Introducing the change of variables x = au, y = bv, z = cw, the ellipsoid is the image of the unit ball $B, u^2 + v^2 + w^2 \le 1$. We have

$$\frac{\partial(x, y, z)}{\partial(u, v, w)} = abc \; .$$

Therefore, the volume of the ellipsoid is given by

$$\iiint_B 1 \times abc \, dV(u, v, w) = \frac{4}{3}\pi abc \; .$$