Chapter 2

Change of Variables

Let ¢ be a continuously differentiable function that maps [a, 8] into [a,b]. For every
continuous function f on [a, b], we have following change of variables formula :

/ flp y)dy = /:(B) f(z)dx . (2.1)

()
The formula comes from a direct application of the Fundamental Theorem of Calculus.
Let F(x) be a primitive function of f, that is, F" = f. Consider the composite function
g(y) = F(e(y)). By the chain rule,

9'(y) = F'le)y'(y) = fle)¢'(y) -

By the fundamental theorem of calculus,

B B8
9(8) - gla) = / J(y) dy = / ()@ (v) dy

On the other hand,

Hence the formula holds.

When ¢ maps [a, 8] bijectively onto [a, ], either ¢ is strictly increasing with p(«a) =
a, ¢(B) = b or it is strictly decreasing with ¢(a) = b, ¢(8) = a. In the first case ¢’ is
non-negative or in the second case non-positive. So (2.1) becomes the formula

/f D¢y \dy—/f (2:2)

In the first two sections we will extend (1.2) to higher dimension. In the last two
sections we consider an extension of (1.1).
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2.1 The Change of Variables Formula

Let Dy and D, be two regions in R"”. (Here we are mainly concerned with n = 2,3.) A
bijective map from D; to D, is called a C*-diffeomorphism if it and its inverse are both
continuously differentiable.

For a differentiable map ® from D; to R", its Jacobian matriz V& is given by
(aq)l/axj)azaj = 1,27 e, N, that iS,
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The determinant of the Jacobian matrix is called the Jacobian of ®. It will be denoted
by Jq;.

By the Inverse Function Theorem, a C'-map from a region D in R" to R™ which is
one-to-one and whose Jacobian never vanishes sets up a C!-diffeomorphism between D
and its image ®(D). This fact will be used implicitly and frequently below.

Theorem 2.1. (Change of Variables Formula) Let ® be a C*-diffeomorphism from
Dy to D. For any continuous function f in D,

/D fla)dz= [ (@) a(w)]dy. (2.3)

Here dx and dy refer to the integration over an n-dimensional region. For n = 2, in
our usual notation, this formula reads as,

//Df(.x,y) dA(z,y) = //D1 F(@(u, v))|Jo (u, v)| dA(u, v)

and for n = 3,

// flx,y,2)dV(z,y, z //91f u, v, w))|Jo(u, v, w)| dV (u, v, w) .
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The integration formulas for the polar coordinates, cylindrical coordinates and spher-
ical coordinates are special cases of this theorem.

In the case of the polar coordinates, we take n = 2 and ®(r,0) = (rcosf,rsinf).
Then Jg = r > 0, so the formula (2.3) becomes

//Df(x,’y) dA(z,y) = /D1 f(rcosf,rsin@)rdA(r,0) .

In the case of the cylindrical coordinates, we take n = 3 and ®(r, 6, z) = (rcosd,rsin#, z).
Then Jg = r and (2.3) becomes

//fxy, )dV = / f(rcos@,rsind, z)rdV(r,0,z) .
1971

when
In the case of the spherical coordinates, we take n = 3 and
O(p, ¢, 0) = (psinpcosb, psinpsind, pcosp) , ¢ € [0,x], 0 €[0,27) .

Then Jgp = p?sinp > 0 and (2.3) becomes

// flz,y,2)dV = // f(psinpcosf, psin psiné, pcos )p sin dV (p, p, ) .
Q 91

We now explain the ideas behind (2.3).

We take n = 2 and D; a rectangle. A partition P = {R,;;} on D; introduces a
generalized partition {D;;} on D. Now, for a continuous function f in D, when the
partition P becomes very fine, by Theorem 1.10,

/DfdA ~ 3 fw)IDy
< X
o Z'f |RZJ||RU|

where p;; is a tag point in D;; and ®(g;;) = p;;. This is possible because ® is bijective.

Now, let us focus on a subrectangle R;;. Let (u,v), (u+h,v), (u,v+k), (u+h,v+k) be
the vertices of the subrectangle. (We have dropped the subscripts i, j for simplicity. (u,v)
should be (u;,v;) and h = Ax;, k = Ay;.) Its image D;; has vertices at ®(u,v), ®(u +
h,v), ®(u,v+ k), and ®(u+ h,v + k). By Taylor’s expansion,

O(u+ h,v) = ®(u,v) + ®,(u,v)h + higher order terms,
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O(u,v+ k) =P(u,v) + ®,(u,v)k + higher order terms,

and
O(u+ h,v+k)=®(u,v) + ®,(u,v)h + D,(u,v)k + higher order terms .

Ignoring the higher order terms, D;; is well approximated by the parallelogram with
vertices at ®(u,v), P(u,v) + Dy (u,v)h, ®(u,v) + ®,(u,v)k, and P(u,v) + D, (u,v)h +
®,(u,v)k. Recall that for a parallelogram spanned by two vectors (aj,as) and (b, by),
its area is given by |a1by — agb;|. Therefore, the area of our parallelogram is equal to
|Jo(u,v)|hk. As hk is just the area of R;

ijy S

Dl [Je(ui, v;) [k
‘Rij| hk

= [Jo(ui, v5)].

It follows that

Dl
Zf |RJ||RM‘ ~ Zf ql] ) Ja( ul,vj)HRm

Note that (u;,v;) is also a tag point in R;;. Applymg Theorem 1.11, as ||P|| — 0,

//Df(a:,y) dA(z,y) = //D1 f(@(u,v))|Jo|(u,v) dA(u,v) .

Similarly, in n = 3, the subrectangular box B;;; maps to a parallelepiped (2;;; under

® and the volume ratio
|2l
| Biji|

~ ‘J‘I’(Uiﬁvjvwk’)‘ :

In the following we look at some examples. We point out that in n = 2, 3, people like
to use another notation for the Jacobian matrix, for instance, Jg is written as

The variables in the numerator and denominator are respective the dependent and inde-
pendent variables. In the next section we will establish the useful relation:
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Example 2.1. Find the area of the region bounded by the curves y = z,y = 6z, 2y = 1
and xy = 5.

We make the region simpler by introducing the change of variables u = y/z and v = xy.
The rectangle (u,v) € [1,6] x [1, 5] is mapped to the region under @ : (u,v) — (x,y). The
map P can be determined by expressing z,y in terms of u,v. After a little manipulation,
we get © = Vou~l,y = /uv. The Jacobian is equal to 1/(—2u). It follows that the area

is given by
6 5
//1dxdy = //
D 1 J1
6 5
oy

= 2logh6 .

Iz, y)

dud
(w,0)| T

Q

1
_—2u dvdu

We point out one can determine the Jacobian without ®. Indeed, the Jacobian of the
inverse map is

O(u,v)
0(z,y)
By the relation above, the Jacobian of ® is 1/(—2u).

= —2y/x = —2u.

Example 2.2. Evaluate the iterated integral
1 11—z
/ / VTt y(y — 22)? dydz .
0o Jo

This is a double integral over the triangle with vertices at (0,0), (1,0) and (0, 1).
While the region of integration is simple enough, the integrand is a bit messy. Unlike the
first example, we simplify the integrand this time. Letting u = x + y and v = y — 2x,
the integrand becomes \/uv? but the region becomes the region bounded by the curves
x =0,y =0,2+y =1 which go over to u = v,2u+v = 0 and u = 1. The Jacobian of
the inverse map is

Therefore,

1 11—z 1 u 1
/ / VTt yly —22) dyde = / \/6025 dydx
o Jo

0 —2u

2
-
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2 Y Y
/ / \/je\/@ dxdy .
1 Jiy VI

The region is composed three sides given by y = x,xy = 1 and y = 2. Let u = /zy
and v = \/y/x or x = u/v,y = uv. The region goes over to the region bounded by
v=1,u=1and uv = 2. We have

Example 2.3 Evaluate

Therefore, our integral is equal to

2 2/u 9
/ / ve =2 dudv = 2e(e — 2) .
1 J1 v

Next we look at some three dimensional examples.

Example 2.4 Evaluate

3 pd pa=y/241 s9.
/ / / ( " + z) drdydz .
0 0 z=y/2 2 3

The region projected to the rectangle [0,3] x [0,4] in yz-plane and is simple enough.
Let t =x —y/2 € [0,1],y = y, 2 = z be the change of variables. The Jacobian is equal to
1. Therefore, this integral is equal to

3 4 gl
z

t+ - ) dtdydz =12 .
INNAGH

Example 2.5. Find the volume of the ellipsoid 2?/a® + y*/b* + 22/c2 < 1.

Introducing the change of variables x = au,y = bv, 2 = cw, the ellipsoid is the image
of the unit ball B, u? 4+ v? + w? < 1. We have

oz, y, z)
O(u,v,w)

= abc .

Therefore, the volume of the ellipsoid is given by

4
/// 1 x abcdV (u,v,w) = —mabc .
B 3



