Chapter 2

Change of Variables

Let φ be a continuously differentiable function that maps $[\alpha, \beta]$ into $[a, b]$. For every continuous function f on $[a, b]$, we have following change of variables formula :

$$
\int_{\alpha}^{\beta} f(\varphi(y))\varphi'(y) dy = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx .
$$
 (2.1)

The formula comes from a direct application of the Fundamental Theorem of Calculus. Let $F(x)$ be a primitive function of f, that is, $F' = f$. Consider the composite function $g(y) = F(\varphi(y))$. By the chain rule,

$$
g'(y) = F'(\varphi(y))\varphi'(y) = f(\varphi(y))\varphi'(y) .
$$

By the fundamental theorem of calculus,

$$
g(\beta) - g(\alpha) = \int_{\alpha}^{\beta} g'(y) dy = \int_{\alpha}^{\beta} f(\varphi(y)) \varphi'(y) dy.
$$

On the other hand,

$$
g(\beta) - g(\alpha) = F(\varphi(\beta)) - F(\varphi(\alpha)) = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx.
$$

Hence the formula holds.

When φ maps $[\alpha, \beta]$ bijectively onto $[a, b]$, either φ is strictly increasing with $\varphi(\alpha)$ = $a, \varphi(\beta) = b$ or it is strictly decreasing with $\varphi(\alpha) = b, \varphi(\beta) = a$. In the first case φ' is non-negative or in the second case non-positive. So (2.1) becomes the formula

$$
\int_{\alpha}^{\beta} f(\varphi(y)) |\varphi'(y)| dy = \int_{a}^{b} f(x) dx . \qquad (2.2)
$$

In the first two sections we will extend (1.2) to higher dimension. In the last two sections we consider an extension of (1.1) .

2.1 The Change of Variables Formula

Let D_1 and D_2 be two regions in \mathbb{R}^n . (Here we are mainly concerned with $n = 2, 3$.) A bijective map from D_1 to D_2 is called a C^1 -diffeomorphism if it and its inverse are both continuously differentiable.

For a differentiable map Φ from D_1 to \mathbb{R}^n , its *Jacobian matrix* $\nabla \Phi$ is given by $(\partial \Phi_i/\partial x_i), i, j = 1, 2, \cdots, n$, that is,

The determinant of the Jacobian matrix is called the *Jacobian* of Φ . It will be denoted by J_{Φ} .

By the Inverse Function Theorem, a C^1 -map from a region D in \mathbb{R}^n to \mathbb{R}^n which is one-to-one and whose Jacobian never vanishes sets up a $C¹$ -diffeomorphism between D and its image $\Phi(D)$. This fact will be used implicitly and frequently below.

Theorem 2.1. (Change of Variables Formula) Let Φ be a C^1 -diffeomorphism from D_1 to D. For any continuous function f in D,

$$
\int_{D} f(\boldsymbol{x}) d\boldsymbol{x} = \int_{D_1} f(\Phi(\boldsymbol{y})) |J_{\Phi}(\boldsymbol{y})| d\boldsymbol{y}. \qquad (2.3)
$$

Here $d\mathbf{x}$ and $d\mathbf{y}$ refer to the integration over an *n*-dimensional region. For $n = 2$, in our usual notation, this formula reads as,

$$
\iint_D f(x, y) dA(x, y) = \iint_{D_1} f(\Phi(u, v)) |J_{\Phi}(u, v)| dA(u, v) ,
$$

and for $n = 3$,

$$
\iiint_{\Omega} f(x, y, z) dV(x, y, z) = \iiint_{\Omega_1} f(\Phi(u, v, w)) |J_{\Phi}(u, v, w)| dV(u, v, w) .
$$

The integration formulas for the polar coordinates, cylindrical coordinates and spherical coordinates are special cases of this theorem.

In the case of the polar coordinates, we take $n = 2$ and $\Phi(r, \theta) = (r \cos \theta, r \sin \theta)$. Then $J_{\Phi} = r \geq 0$, so the formula (2.3) becomes

$$
\iint_D f(x,y) dA(x,y) = \iint_{D_1} f(r \cos \theta, r \sin \theta) r dA(r, \theta) .
$$

In the case of the cylindrical coordinates, we take $n = 3$ and $\Phi(r, \theta, z) = (r \cos \theta, r \sin \theta, z)$. Then $J_{\Phi} = r$ and (2.3) becomes

$$
\iiint_{\Omega} f(x, y, z) dV = \iint_{\Omega_1} f(r \cos \theta, r \sin \theta, z) r dV(r, \theta, z) .
$$

when

In the case of the spherical coordinates, we take $n = 3$ and

$$
\Phi(\rho, \varphi, \theta) = (\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) , \quad \varphi \in [0, \pi], \ \theta \in [0, 2\pi) .
$$

Then $J_{\Phi} = \rho^2 \sin \varphi \ge 0$ and (2.3) becomes

$$
\iiint_{\Omega} f(x, y, z) dV = \iiint_{\Omega_1} f(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) \rho^2 \sin \varphi dV(\rho, \varphi, \theta) .
$$

We now explain the ideas behind (2.3) .

We take $n = 2$ and D_1 a rectangle. A partition $P = \{R_{ij}\}\$ on D_1 introduces a generalized partition $\{D_{ij}\}\$ on D. Now, for a continuous function f in D, when the partition P becomes very fine, by Theorem 1.10,

$$
\iint_D f dA \approx \sum_{i,j} f(p_{ij}) |D_{ij}|
$$

=
$$
\sum_{i,j} f(\Phi(q_{ij})) \frac{|D_{ij}|}{|R_{ij}|} |R_{ij}|,
$$

where p_{ij} is a tag point in D_{ij} and $\Phi(q_{ij}) = p_{ij}$. This is possible because Φ is bijective.

Now, let us focus on a subrectangle R_{ij} . Let $(u, v), (u+h, v), (u, v+k), (u+h, v+k)$ be the vertices of the subrectangle. (We have dropped the subscripts i, j for simplicity. (u, v) should be (u_i, v_j) and $h = \Delta x_i, k = \Delta y_j$. Its image D_{ij} has vertices at $\Phi(u, v), \Phi(u +$ $(h, v), \Phi(u, v + k),$ and $\Phi(u + h, v + k)$. By Taylor's expansion,

$$
\Phi(u+h,v) = \Phi(u,v) + \Phi_u(u,v)h +
$$
 higher order terms,

$$
\Phi(u, v + k) = \Phi(u, v) + \Phi_v(u, v)k + \text{ higher order terms},
$$

and

$$
\Phi(u+h, v+k) = \Phi(u, v) + \Phi_u(u, v)h + \Phi_v(u, v)k + \text{ higher order terms }.
$$

Ignoring the higher order terms, D_{ij} is well approximated by the parallelogram with vertices at $\Phi(u, v), \Phi(u, v) + \Phi_u(u, v)h, \Phi(u, v) + \Phi_v(u, v)k$, and $\Phi(u, v) + \Phi_u(u, v)h + \Phi_v(u, v)h$ $\Phi_v(u, v)$ k. Recall that for a parallelogram spanned by two vectors (a_1, a_2) and (b_1, b_2) , its area is given by $|a_1b_2 - a_2b_1|$. Therefore, the area of our parallelogram is equal to $|J_{\Phi}(u, v)|$ hk. As hk is just the area of R_{ij} , so

$$
\frac{|D_{ij}|}{|R_{ij}|} \approx \frac{|J_{\Phi}(u_i, v_j)|hk}{hk} = |J_{\Phi}(u_i, v_j)|.
$$

It follows that

$$
\sum_{i,j} f(\Phi(q_{ij})) \frac{|D_{ij}|}{|R_{ij}|} |R_{ij}| \approx \sum_{i,j} f(\Phi(q_{ij})) |J_{\Phi}(u_i, v_j)||R_{ij}|.
$$

Note that (u_i, v_j) is also a tag point in R_{ij} . Applying Theorem 1.11, as $||P|| \to 0$,

$$
\iint_D f(x, y) dA(x, y) = \iint_{D_1} f(\Phi(u, v)) |J_{\Phi}|(u, v) dA(u, v) .
$$

Similarly, in $n = 3$, the subrectangular box B_{ijk} maps to a parallelepiped Ω_{ijk} under Φ and the volume ratio

$$
\frac{|\Omega_{ijk}|}{|B_{ijk}|} \approx |J_{\Phi}(u_i, v_j, w_k)|.
$$

In the following we look at some examples. We point out that in $n = 2, 3$, people like to use another notation for the Jacobian matrix, for instance, J_{Φ} is written as

$$
\frac{\partial(x,y)}{\partial(u,v)}\ .
$$

The variables in the numerator and denominator are respective the dependent and independent variables. In the next section we will establish the useful relation:

$$
\frac{\partial(x,y)}{\partial(u,v)} = \frac{1}{\frac{\partial(u,v)}{\partial(x,y)}}
$$

.

Example 2.1. Find the area of the region bounded by the curves $y = x, y = 6x, xy = 1$ and $xy = 5$.

We make the region simpler by introducing the change of variables $u = y/x$ and $v = xy$. The rectangle $(u, v) \in [1, 6] \times [1, 5]$ is mapped to the region under $\Phi : (u, v) \mapsto (x, y)$. The map Φ can be determined by expressing x, y in terms of u, v. After a little manipulation, we get $x = \sqrt{vu^{-1}}, y = \sqrt{uv}$. The Jacobian is equal to $1/(-2u)$. It follows that the area is given by

$$
\iint_D 1 \, dx dy = \int_1^6 \int_1^5 \left| \frac{\partial(x, y)}{\partial(u, v)} \right| \, du dv
$$

$$
= \int_1^6 \int_1^5 \left| \frac{1}{-2u} \right| \, dv du
$$

$$
= 2 \log 6.
$$

We point out one can determine the Jacobian without Φ. Indeed, the Jacobian of the inverse map is

$$
\frac{\partial(u,v)}{\partial(x,y)} = -2y/x = -2u.
$$

By the relation above, the Jacobian of Φ is $1/(-2u)$.

Example 2.2. Evaluate the iterated integral

$$
\int_0^1 \int_0^{1-x} \sqrt{x+y} (y-2x)^2 dy dx .
$$

This is a double integral over the triangle with vertices at $(0, 0), (1, 0)$ and $(0, 1)$. While the region of integration is simple enough, the integrand is a bit messy. Unlike the first example, we simplify the integrand this time. Letting $u = x + y$ and $v = y - 2x$, the integrand becomes $\sqrt{uv^2}$ but the region becomes the region bounded by the curves $x = 0, y = 0, x + y = 1$ which go over to $u = v, 2u + v = 0$ and $u = 1$. The Jacobian of the inverse map is

$$
\frac{\partial(u,v)}{\partial(x,y)} = 3.
$$

Therefore,

$$
\int_0^1 \int_0^{1-x} \sqrt{x+y}(y-2x)^2 dy dx = \int_0^1 \int_{-2u}^u \sqrt{u}v^2 \frac{1}{3} dy dx
$$

= $\frac{2}{9}$.

Example 2.3 Evaluate

$$
\int_1^2 \int_{1/y}^y \sqrt{\frac{y}{x}} e^{\sqrt{xy}} dx dy.
$$

The region is composed three sides given by $y = x, xy = 1$ and $y = 2$. Let $u = \sqrt{xy}$ and $v = \sqrt{\frac{y}{x}}$ or $x = u/v, y = uv$. The region goes over to the region bounded by $v = 1, u = 1$ and $uv = 2$. We have

$$
\frac{\partial(x,y)}{\partial(u,v)} = \frac{2u}{v}
$$

.

Therefore, our integral is equal to

$$
\int_1^2 \int_1^{2/u} v e^u \frac{2u}{v} du dv = 2e(e-2) .
$$

Next we look at some three dimensional examples.

Example 2.4 Evaluate

$$
\int_0^3 \int_0^4 \int_{x=y/2}^{x=y/2+1} \left(\frac{2x-y}{2} + \frac{z}{3} \right) dx dy dz.
$$

The region projected to the rectangle $[0, 3] \times [0, 4]$ in yz-plane and is simple enough. Let $t = x - y/2 \in [0, 1], y = y, z = z$ be the change of variables. The Jacobian is equal to 1. Therefore, this integral is equal to

$$
\int_0^3 \int_0^4 \int_0^1 \left(t + \frac{z}{3} \right) dt dy dz = 12.
$$

Example 2.5. Find the volume of the ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 \le 1$.

Introducing the change of variables $x = au$, $y = bv$, $z = cw$, the ellipsoid is the image of the unit ball $B, u^2 + v^2 + w^2 \leq 1$. We have

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)} = abc.
$$

Therefore, the volume of the ellipsoid is given by

$$
\iiint_B 1 \times abc \, dV(u, v, w) = \frac{4}{3} \pi abc \; .
$$