
Chapter 2

Change of Variables

Let ϕ be a continuously differentiable function that maps [α, β] into [a, b]. For every
continuous function f on [a, b], we have following change of variables formula :

ˆ β

α

f(ϕ(y))ϕ′(y) dy =

ˆ ϕ(β)

ϕ(α)

f(x) dx . (2.1)

The formula comes from a direct application of the Fundamental Theorem of Calculus.
Let F (x) be a primitive function of f , that is, F ′ = f . Consider the composite function
g(y) = F (ϕ(y)). By the chain rule,

g′(y) = F ′(ϕ(y))ϕ′(y) = f(ϕ(y))ϕ′(y) .

By the fundamental theorem of calculus,

g(β)− g(α) =

ˆ β

α

g′(y) dy =

ˆ β

α

f(ϕ(y))ϕ′(y) dy .

On the other hand,

g(β)− g(α) = F (ϕ(β))− F (ϕ(α)) =

ˆ ϕ(β)

ϕ(α)

f(x) dx .

Hence the formula holds.

When ϕ maps [α, β] bijectively onto [a, b], either ϕ is strictly increasing with ϕ(α) =
a, ϕ(β) = b or it is strictly decreasing with ϕ(α) = b, ϕ(β) = a. In the first case ϕ′ is
non-negative or in the second case non-positive. So (2.1) becomes the formula

ˆ β

α

f(ϕ(y))|ϕ′(y)| dy =

ˆ b

a

f(x) dx . (2.2)

In the first two sections we will extend (1.2) to higher dimension. In the last two
sections we consider an extension of (1.1).
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2.1 The Change of Variables Formula

Let D1 and D2 be two regions in Rn. (Here we are mainly concerned with n = 2, 3.) A
bijective map from D1 to D2 is called a C1-diffeomorphism if it and its inverse are both
continuously differentiable.

For a differentiable map Φ from D1 to Rn, its Jacobian matrix ∇Φ is given by
(∂Φi/∂xj), i, j = 1, 2, · · · , n, that is,

∂Φ1

∂x1

· · · · · · ∂Φ1

∂xn

∂Φ2

∂x1

· · · · · · ∂Φ2

∂xn

· · · · · · · · · · · ·

∂Φn

∂x1

· · · · · · ∂Φn

∂xn


The determinant of the Jacobian matrix is called the Jacobian of Φ. It will be denoted
by JΦ.

By the Inverse Function Theorem, a C1-map from a region D in Rn to Rn which is
one-to-one and whose Jacobian never vanishes sets up a C1-diffeomorphism between D
and its image Φ(D). This fact will be used implicitly and frequently below.

Theorem 2.1. (Change of Variables Formula) Let Φ be a C1-diffeomorphism from
D1 to D. For any continuous function f in D,

ˆ
D

f(x) dx =

ˆ
D1

f(Φ(y))|JΦ(y)| dy . (2.3)

Here dx and dy refer to the integration over an n-dimensional region. For n = 2, in
our usual notation, this formula reads as,

¨
D

f(x, y) dA(x, y) =

¨
D1

f(Φ(u, v))|JΦ(u, v)| dA(u, v) ,

and for n = 3,

˚
Ω

f(x, y, z) dV (x, y, z) =

˚
Ω1

f(Φ(u, v, w))|JΦ(u, v, w)| dV (u, v, w) .
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The integration formulas for the polar coordinates, cylindrical coordinates and spher-
ical coordinates are special cases of this theorem.

In the case of the polar coordinates, we take n = 2 and Φ(r, θ) = (r cos θ, r sin θ).
Then JΦ = r ≥ 0, so the formula (2.3) becomes

¨
D

f(x, y) dA(x, y) =

¨
D1

f(r cos θ, r sin θ)r dA(r, θ) .

In the case of the cylindrical coordinates, we take n = 3 and Φ(r, θ, z) = (r cos θ, r sin θ, z).
Then JΦ = r and (2.3) becomes

˚
Ω

f(x, y, z) dV =

¨
Ω1

f(r cos θ, r sin θ, z)r dV (r, θ, z) .

when

In the case of the spherical coordinates, we take n = 3 and

Φ(ρ, ϕ, θ) = (ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) , ϕ ∈ [0, π], θ ∈ [0, 2π) .

Then JΦ = ρ2 sinϕ ≥ 0 and (2.3) becomes

˚
Ω

f(x, y, z) dV =

˚
Ω1

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕdV (ρ, ϕ, θ) .

We now explain the ideas behind (2.3).

We take n = 2 and D1 a rectangle. A partition P = {Rij} on D1 introduces a
generalized partition {Dij} on D. Now, for a continuous function f in D, when the
partition P becomes very fine, by Theorem 1.10,¨

D

f dA ≈
∑
i,j

f(pij)|Dij|

=
∑
i,j

f(Φ(qij))
|Dij|
|Rij|

|Rij| ,

where pij is a tag point in Dij and Φ(qij) = pij. This is possible because Φ is bijective.

Now, let us focus on a subrectangle Rij. Let (u, v), (u+h, v), (u, v+k), (u+h, v+k) be
the vertices of the subrectangle. (We have dropped the subscripts i, j for simplicity. (u, v)
should be (ui, vj) and h = ∆xi, k = ∆yj.) Its image Dij has vertices at Φ(u, v),Φ(u +
h, v),Φ(u, v + k), and Φ(u+ h, v + k). By Taylor’s expansion,

Φ(u+ h, v) = Φ(u, v) + Φu(u, v)h+ higher order terms,
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Φ(u, v + k) = Φ(u, v) + Φv(u, v)k + higher order terms,

and

Φ(u+ h, v + k) = Φ(u, v) + Φu(u, v)h+ Φv(u, v)k + higher order terms .

Ignoring the higher order terms, Dij is well approximated by the parallelogram with
vertices at Φ(u, v),Φ(u, v) + Φu(u, v)h,Φ(u, v) + Φv(u, v)k, and Φ(u, v) + Φu(u, v)h +
Φv(u, v)k. Recall that for a parallelogram spanned by two vectors (a1, a2) and (b1, b2),
its area is given by |a1b2 − a2b1|. Therefore, the area of our parallelogram is equal to
|JΦ(u, v)|hk. As hk is just the area of Rij, so

|Dij|
|Rij|

≈ |JΦ(ui, vj)|hk
hk

= |JΦ(ui, vj)|.

It follows that

∑
i,j

f(Φ(qij))
|Dij|
|Rij|

|Rij| ≈
∑
i,j

f(Φ(qij))|JΦ(ui, vj)||Rij| .

Note that (ui, vj) is also a tag point in Rij. Applying Theorem 1.11, as ‖P‖ → 0,

¨
D

f(x, y) dA(x, y) =

¨
D1

f(Φ(u, v))|JΦ|(u, v) dA(u, v) .

Similarly, in n = 3, the subrectangular box Bijk maps to a parallelepiped Ωijk under
Φ and the volume ratio

|Ωijk|
|Bijk|

≈ |JΦ(ui, vj, wk)| .

In the following we look at some examples. We point out that in n = 2, 3, people like
to use another notation for the Jacobian matrix, for instance, JΦ is written as

∂(x, y)

∂(u, v)
.

The variables in the numerator and denominator are respective the dependent and inde-
pendent variables. In the next section we will establish the useful relation:

∂(x, y)

∂(u, v)
=

1

∂(u, v)

∂(x, y)

.
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Example 2.1. Find the area of the region bounded by the curves y = x, y = 6x, xy = 1
and xy = 5.

We make the region simpler by introducing the change of variables u = y/x and v = xy.
The rectangle (u, v) ∈ [1, 6]× [1, 5] is mapped to the region under Φ : (u, v) 7→ (x, y). The
map Φ can be determined by expressing x, y in terms of u, v. After a little manipulation,
we get x =

√
vu−1, y =

√
uv. The Jacobian is equal to 1/(−2u). It follows that the area

is given by

¨
D

1 dxdy =

ˆ 6

1

ˆ 5

1

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dudv
=

ˆ 6

1

ˆ 5

1

∣∣∣∣ 1

−2u

∣∣∣∣ dvdu
= 2 log 6 .

We point out one can determine the Jacobian without Φ. Indeed, the Jacobian of the
inverse map is

∂(u, v)

∂(x, y)
= −2y/x = −2u.

By the relation above, the Jacobian of Φ is 1/(−2u).

Example 2.2. Evaluate the iterated integral

ˆ 1

0

ˆ 1−x

0

√
x+ y(y − 2x)2 dydx .

This is a double integral over the triangle with vertices at (0, 0), (1, 0) and (0, 1).
While the region of integration is simple enough, the integrand is a bit messy. Unlike the
first example, we simplify the integrand this time. Letting u = x + y and v = y − 2x,
the integrand becomes

√
uv2 but the region becomes the region bounded by the curves

x = 0, y = 0, x + y = 1 which go over to u = v, 2u + v = 0 and u = 1. The Jacobian of
the inverse map is

∂(u, v)

∂(x, y)
= 3 .

Therefore,

ˆ 1

0

ˆ 1−x

0

√
x+ y(y − 2x)2 dydx =

ˆ 1

0

ˆ u

−2u

√
uv2 1

3
dydx

=
2

9
.
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Example 2.3 Evaluate ˆ 2

1

ˆ y

1/y

√
y

x
e
√
xy dxdy .

The region is composed three sides given by y = x, xy = 1 and y = 2. Let u =
√
xy

and v =
√
y/x or x = u/v, y = uv. The region goes over to the region bounded by

v = 1, u = 1 and uv = 2. We have

∂(x, y)

∂(u, v)
=

2u

v
.

Therefore, our integral is equal to

ˆ 2

1

ˆ 2/u

1

veu
2u

v
dudv = 2e(e− 2) .

Next we look at some three dimensional examples.

Example 2.4 Evaluate

ˆ 3

0

ˆ 4

0

ˆ x=y/2+1

x=y/2

(
2x− y

2
+
z

3

)
dxdydz .

The region projected to the rectangle [0, 3] × [0, 4] in yz-plane and is simple enough.
Let t = x− y/2 ∈ [0, 1], y = y, z = z be the change of variables. The Jacobian is equal to
1. Therefore, this integral is equal to

ˆ 3

0

ˆ 4

0

ˆ 1

0

(
t+

z

3

)
dtdydz = 12 .

Example 2.5. Find the volume of the ellipsoid x2/a2 + y2/b2 + z2/c2 ≤ 1 .

Introducing the change of variables x = au, y = bv, z = cw, the ellipsoid is the image
of the unit ball B, u2 + v2 + w2 ≤ 1. We have

∂(x, y, z)

∂(u, v, w)
= abc .

Therefore, the volume of the ellipsoid is given by
˚

B

1× abc dV (u, v, w) =
4

3
πabc .


